-16t^2+140t+56=0

Simple and best practice solution for -16t^2+140t+56=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+140t+56=0 equation:



-16t^2+140t+56=0
a = -16; b = 140; c = +56;
Δ = b2-4ac
Δ = 1402-4·(-16)·56
Δ = 23184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{23184}=\sqrt{144*161}=\sqrt{144}*\sqrt{161}=12\sqrt{161}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-12\sqrt{161}}{2*-16}=\frac{-140-12\sqrt{161}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+12\sqrt{161}}{2*-16}=\frac{-140+12\sqrt{161}}{-32} $

See similar equations:

| 1=3x=-5+x | | q^2+23q+134=0 | | -5(k+9)-3k=4k+10-14k-1 | | 0=-0.8t^2+10t+2 | | 8(10)+5(y)=40 | | 6x+8x+2x=180-10-10-10 | | 12=n+n/2 | | 1/10· w = 7/9 | | 1/10·w=7/9 | | 9w=9×26 | | 7z+6=0 | | 27x3=81 | | 50=2(14)+2w | | 4(4x-8)=80 | | 4(x=1)+3=31 | | 2x²+3=-5x | | 3/5x-6/35=-5/8x-3/5 | | 3x/6=x+6/3 | | 4(20x+75)=1180 | | a+293=273 | | 12=x+(x2) | | 2x^2-13x-40=5 | | 9-6(x+2)=5-2(x+6) | | 9a-3=5a+12 | | 2(3x+9)=78 | | 8m+5=16 | | 2/4x-12=20 | | 2t^2+11t+20=0 | | |3x-7|+6=1 | | 3/5x+11=10 | | 2x+18=118 | | 2(4x+1)-4(5-x)-5=2(10-x) |

Equations solver categories